
Persistent currents in 1D rings and the metal-insulator transition under strong long-range

Coulomb repulsion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 2739

(http://iopscience.iop.org/0953-8984/6/14/011)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


~ 1. Phys..: Condens. Matter 6 (1994) 2739-2746. Printed in the UK 

Persistent currents in ID rings and the metal-insulator 
transition under strong long-range Coulomb repulsion 

R Berkovitst, V Freilikhert, I Yurkevicht and A Slutskint 
t The Jack and Pea11 Resnick Institute of Advanced Technology, Depamnent of Physics, Bar- 
Ilan University, RamatGan 52900, Israel 
t lnstimte for Low 'Temperature Physics and Engineering, W k o v  310164, Ukraine 

Received 26 November 1993, in final form 17 January 1994 

Abslraci A perturbative approach for large (in comparison with electron overlap and on- 
site disorder) long-range Coulomb interaction is developed for a I D  ring model. The explicit 
expression for low-lying energy levels has been obtained. It is shown that in the case of strong 
repulsive long-range interaction persistent current does not depend exclusively on the filling 
factor U = p / q  but is extremely sensitive to i t s  denominator q.  It also depends on the common 
factor M of electrons and sites number. In the absence of a common factor (M = I )  there exists 
only one quasiparticle that experiences no strong Coulomb interaction, thus moving freely with 
bare electron overlap, which provides an unexpectedly large perristent cument. For the case 
of an arbitrary M and a large enough q a system of M weakly interacting quasiparticles has 
been inboduced, which undergoes a metal-insulator transition at unusually small overlap even 
for a filling factor close to one Mf.  Suppression of the persistent current by disorder is taken 
into account. Comparison of analytically obtained expressions with the results of numerical 
calculations shows a reasonable agreement. 

Recent measurements of the persistent current of small mesoscopic rings have aroused much 
interest in this field 11-31, Due to discrepancies between the prediction of a singleelectron 
theory for the persistent cnrrent of a disordered ring [15-191 and the values measured in 
experiment [l, 21, many theoretical studies regarding the influence of electron-electron ( H )  
interactions on the persistent current of rings threaded by a magnetic flux were initiated [4- 
141. The main goal was to check whether e-e interactions could increase the average 
persistent current of a disordered system. 

In [ I l l  it was shown that for a ID half-filled single-band spinless lattice model H 

interactions do not lead to a dramatic increase of the persistent current above its non- 
interacting value. The result was also checked for an arbitrary filled ring [14], and, based 
on variational methods and numerical studies, it has been shown that for any amount of 
disorder the current must decrease. An interesting behaviour was observed for an ordered 
ring, where for certain filling factors in the limit of large interactions the current approaches 
zero, while for other fillng factors, termed the 'frustrated' cases, the current approaches a 
small but finite value. Hence, for these models e-e interactions cannot explain the high 
values of current observed in experiment. The reason for the absence of any dramatic 
increase in the average current is that for interactions strong enough to counter the influence 
of disorder the electrons are already in a pinned Wigner crystal, for which the current is 
suppressed. 

In this paper we shall approach the arbitrary filled ring model using a perturbative 
method. We shall show that for an ordered ring the magnitude of persistent current depends 
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strongly on the common factor M but not on the filling factor U = p / q .  In the case 
of M = 1 there exists a quasiparticle that exhibits no Coulomb interactions and canies 
large persistent current. If M # 1 and q is large enough a system of weakly interacting 
quasiparticles can be introduced, which undergoes the metal-insulator transition at unusually 
small overlap even for filling factor close to one half. For the case of an on-site disorder 
we shall obtain an explicit expression for the persistent current, which, compared with the 
results of numerical calculations, will demonstrate a reasonable fit. 

Let us consider a ID ring with N = M q  sites threaded by magnetic flux q5 and containing 
N. = M p  electrons. The Coulomb e-e interaction is assumed to be strong in the sense that 
the overlap t is much smaller than the change in Coulomb energy, denoted by V ,  under the 
displacement of one electron by one lattice spacing. 

To develop the perturbative approach in the small parameter t / V  < 1 we shall use a 
zeroth-order approximation the well known Hubbard solution of the unperturbed (t = 0) 
problem [20]. In [20] Hubbard proposed a rigorous procedure to construct the gound-state 
(GS) configuration for a system consisting of particles interacting with each other by a long- 
range potential, which is assumed to be repulsive and convex. For a given filling factor U ,  
defined as the ratio of the number of particles Ne to the number of sites N ,  the Hamiltonian 

i j  

(where Vi, is the interelectron interaction energy and ni are the electron occupation number 
operators), determines uniquely the arrangement of particles minimizing the interaction 
energy. This arrangement represents a ID classical Wigner lattice, which is the configuration 
of the GS of Hamiltonian (1). To build up this configuration one has to expand filling factor 
v into a continued fraction 

U =  l / ( n + a / [ n ~  + o l ~ / ( n ~ + . . . + o l ~ - ~ l n , ) l }  (2) 

where all ni are positive integers and olj = il are chosen to provide the modulus of the 
remainders at any step to be less than one half. The configuration corresponding to the 
value v = p / q  ( p ,  q are integers with no common factor) is periodic with a period q and 
has p electrons in each period. Configurations are described by a sequence of the distances 
between the nearest particles. In the GS configuration distances take two values only: n 
and n + a. We follow Hubbard by denoting the configuration of i particles spaced by a 
distances X as [ X I i  and define the sequences ( X I )  and (Y,) by 

xi+] = [xj]"i-'~~ X I  = n  Y;+1 = [x~]"**~- 'Y~ Y , = n + a  (3) 

then the required arrangement for the filling factor (2) in each period is given by X,. 
Built up in this way the GS configuration enables us to develop the perturbative approach 

for a small overlap f in order to obtain a persistent current. We will further treat the 
Hamiltonian 

where ci(c:) are the annihilation (creation) operators, ni = crc; is the particle number 
operator, 0 = 2rq5/N& allows for magnetic flux q5 threading a ring of N sites and 
q50 = hc/e  is the flux quantum. 
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As follows from Hubbard's algorithm the Gs configuration for filling factor w = p / q  is 
q-fold degenerate. 

To consmct a perturbation approach in a case of GS degeneracy we need to introducs 
the operator P, which projects onto the subspace of the GS eigenfunctions of Eo and an 
operator Q = 1 -P, which projects onto the orthogonal subspace. Then dividing an arbitrary 
wavefunction P into two parts belonging to the different subspaces P = P@ + Q@ and 
projecting the Schrodinger equation 'HQ? = EP onto these two subspaces 

PEP. P P  + PEQ.  Q@ = E .  PQ? Q'HQ * QP + Q'HP. P.Jr = E  Q P  (5)  

one can eliminate the part of the wavefunction lying outside the GS subspace 

QQ? = [ I / ( E  - Q'FlQ)]QEP. PP  (6) 

in order to obtain an effective Hamiltonian in the GS subspace 

EetP@ = E .  P P  = P'HP + PEQ . [ I / ( E  - Q'HQ)] - QEP. (7) 

Bearing in mind that such an approach can be useful only for the case when the Coulomb 
interaction is the largest energy in the problem, it is convenient to expand the effective 
Hamiltonian (7) in the kinetic energy operator T 

If we express the projecting operator P through the set (Iff)}:=, of the OS eigenfunction 
'Hela) = Emla) as follows: 

the effective Hamiltonian takes the form 

where 

and 

Here the electron positions i and j belong to one of the GS configurations ff. The first term 
in (1  1) is the unperturbed GS energy, which does not depend on LY and will be taken as zero. 

Hereforth we assume that the gap between the GS energy and the first excited level in 
the absence of the overlap element (equal to the smallest loss in the Coulomb energy under 
one spacing shift of any electron from its GS position) is much larger than the GS level split 
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due to disorder and overlap t .  This lets us restrict ourselves by the first non-zeroth term in 
Tup (10) and take E as equal to the unperturbed GS energy there. 

As apparently follows from (10) the leading term in overlap is diagonal and equal to 

where Vi, denotes the extra Coulomb energy under a shift of the ith particle to the left 
(U = -) or right (U = +) by one spacing. It is important to note that this term is 
# independent because in the lowest approximation (12) it describes the displacement and 
then the return of each electron to the same site and therefore the phase factors 0 cancel out. 
It may seem that the flux-dependent contribution will appear in the N,th order correction 
to the GS energy only, which corresponds to the rotation of the electron system as a whole 
by a lattice constant, but what actually happens is that we need to shift only M electrons 
to transfer one unperturbed vacuum state Iff) to some other vacuum state 1s). To prove our 
statement we will point to the quickest way of such a transformation which, in accordance 
with (lo), gives us the leading #-dependent term of Tap. With this aim we should treat in 
detail the unperturbed GS configuration. 

The position of the ith electron in the GS configuration described by the Hubbard 
algorithm can be expressed in the analytical form 

xi = [i/u - 51 (13) 

where square brackets denote an integer part, the particle coordinates are measured in lattice 
units and is an arbitrary parameter corresponding to the different choices of origin. The 
proof of the equivalence between GS configurations constructed following the Hubbard 
algorithm and (13) lies in the fact that the GS energy EGS calculated with the use of (13) 
has the form 

and coincides with that obtained in [22] from the Hubbard algorithm for finite-range 
interaction if one replaces the interaction range with the ring circumference (curly brackets 
in (14) denote the fractional part). Since the GS energy does not include the parameter e, 
all configurations related to its different values are GS ones. As is obvious from (13) the 
changing o f t  by unity corresponds to the rotation of all electrons as a whole by one lattice 
spacing and after changing by q the configuration will coincide with itself. This means 
that the 'evolution' of 6 transfers between different vacuums of Hamiltonian (1). To trace 
how this transfer occurs let us follow what happens with particles i = 0, 1, . . . , p - 1 (one 
period) on increasing from zero to unity (rotation of the whole electron system by one 
lattice spacing). To do this it is convenient to rewrite (13) in the form 

xi = [[i/ul+ (i/u) - (1. (15) 

I n  our case (filling factor v = p / q ,  p and q have no common factor) the following property 
exists: 

{slu) = (s'/u) only for s = s' i fs ,  s' = 0.1, . . . , p - 1. (16) 
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Statement (16) is true because otherwise (s - s')/v would be proportional to an integer, 
which contradicts the fact that p and q do not have a common factor. Property (16) means 
that we can order fractional parts appearing in (15): 

{ i o / u )  < (il/u) < . . . < [ ip-2/u}  < [ip-,/u]. 

When 5 = 0 the initial configuration is given by xi = [ i / u ] .  
0 < 5 < ( i l / u )  we obtain one new configuration defined by 

Within the interval 

xi = [i/v] for i # io, xio = -1. 

This configuration differs from the initial one just by shifting the ioth electron by one spacing 
to the left. In the interval {il /u) c 5 i [ i z / u )  we find two electrons shifted by one spacing 
to the left 

xi = [i/u] for i # io, i l  x' IO - - -1, xi, = [il/vl - 1. 

Proceeding with the evolution we will transfer different vacuums from one to another and 
within p steps rotate the whole electron system on one lattice spacing. At each step we 
should move only one electron in the period. Therefore we have finished the proof of our 
statement mentioned above: with no overlap, the GS configuration of Ne = M p  elect" 
on a ring with N = Mq sites is such that it is enough to shift only M electrons to transfer 
one vacuum state (the GS configuration) to another. 

Returning to the calculation of the parameter pap in Hamiltonian (9), for the leading 
order in the overlap t we may retain only transitions between la) states corresponding to 
the largest hopping term (which corresponds to the shift of M special electrons, described 
above). If we label the nearest (in the sense of transferring probability, i.e. magnitude of 
matrix elements (IO)) states as la) and la 2~ I ) ,  we obtain a tight-binding Hamiltonian with 
nearest-neighbour hopping 

(17) " M 8  
' H ~ K  = la)~,(al - te 101 + l)(al - ie-'Mela)(a+ 11 

U 

where 

i =  \(a% ~IT(-(~/'H~)OTQ)~-~I~}\ N_ t(zt/V)'-'. (18) 

Here V is the characteristic Coulomb excitation energy, which is of the order of the energy 
of the first excited level and related to the discreteness of lattice. Therefore, the problem is 
reduced to the problem of one 'particle' moving with a renormalized hopping term 

i = t(2t/ v ) ~ - '  (1% 

through a ring with q sites. According to our previous consideration the 4 low-lying energy 
levels appearing due to the GS degeneracy removal are given by 

E.@) = - z t ( z t / v ) M - l  cos(k/q)(n + p) n = 0,1 , .  . . , 4 - 1 (20) 

where p = 9/90 is the dimensionless flux. 
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(20) shows that the p-dependent energy shift (and therefore the persistent current) 
depends not on the filling factor U = p / q  as might be expected, but on its denominator q 
only. It also depends on the common factor M and not on the number of electrons. 

What is most surprising is the fact that in a case where no common factor exists 
( N .  = p ,  N = q.  M = 1) there are only two special electrons whose displacements lead 
to the transform of a vacuum state [a) into another one distinguishing only by the position 
of the defect Y,,,-,. "his defect can be regarded as a freely moving quasiparticle with the 
bare electron overlap t and feeling no Coulomb interactions at all. In the situation when 
the numbers of sites and electrons have no common factor the GS energy does not depend 
on Ne: 

E,(p) = -2tcos(%/q)(n + (0). (21) 

The persistent current can be easily calculated using the well known relation 

I ( V )  = -(e/h)aEcswarp 

where E~s(p)  = min(E.(p)) is the Gs energy, which is periodic in 9 with unit period: 

= -(e/h)t(4rr/q)sin(zn/q)yl - I <  z,(D.z. < '  (22) 

In the case of M # 1 the persistent current can be obtained in the same way: 

In the case of small flux (2n@/q << 1) (22) and (23) coincide with the result obtained in 
[ 141 by the variational method. Expression (23) explicitly demonstrates insensitivity to the 
number p of electrons per elementary cell of the Wigner crystal. This insensitivity can be 
easily understood in the terms of M quasiparticles described above. The weakness of their 
interaction stems from the fact that the change in Coulomb energy under the displacement 
of one special electron is governed by interactions between these special electrons only 
(the Coulomb energy of the interaction of the special electron with the rest of them is not 
changed under this displacement). In other words, the energy Uij of their interaction is 
equal to the Coulomb energy of a one-spacing shift for particles separated by a distance 

The fact that in the leading order we can introduce M weakly coupled 'particles', 
insensitive to the rest of the electrons composing the Wigner lattice, leads to an unexpected 
behaviour of the coherence length in the insulating regime as a function of filling factor 
and, accordingly, to a drastical change of metal-insulator transition criteria even in the case 
when the filling factor is of the order of unity. To obtain these features it is sufficient to note 
that expression (20) contains a factor exponential in the eleceon number, which implies a 
metal-insulator transition (in the thermodynamical limit M + 00) when the characteristic 
Coulomb energy becomes equal to the electron overlap, but as has been mentioned above, the 
typical energy in the denominator of (20) is that V ( q )  of a defect pair creation in the electron 
lattice gas with filling factor l /q  (a defect providing the smallest increase of the Coulomb 
energy corresponds to the structure.. . [ql lq] . .  . [q+ Il[qlIql.. . Iql[q - Il[ql[ql.. .; V ( q )  
is the extra Coulomb energy when pair [q + I] and [q - I] are infinitely moved apart). 
This means that even for filling factor close to unity the metal-insulator transition occurs 
at small enough overlap if q is large enough. One can easily check that stiffness coefficient 

li - j lq.  i.e. Uli-jl = v i - j l p .  
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D ( D  = (N/rp2)aZE/arp2) calculated with the use of (20) is proportional to the small 
exponent under the thermodynamic limit ( M  + 00) 

D = Nt(2a/q)Ze-N'F (24) 

as it should be in the insulating regime, but the coherence length 1 

6 = q In-'(V(q)/2t) (25) 

tends to infinity when q increases. A metal-insulator transition (c = m) occurs at overlap 
f = V(q)/2 which is essentially less than that of the half-filled case. It is important to note 
that this conclusion is valid as long as q >> 1 even if U = p / q  is close to one half. 

.20 
0.0 2.0 4.0 6.0 6.0 

W 

Figure 1. The localization lenglh 
as a function of disorder. The line 

, represents (28) (with W = 2.5) 
while the symbols correspond to the 
localization length extracted from the 
numerical data according to (26). 
The ensemble average is performed 
over 500 realizations of disorder. 

,o 

Some predictions concerning the disorder effect can be made due to the reduction of 
the initial many-body problem to a rather simple Hamiltonian (17), where E, are 'disorder' 
energies of different vacuums (the second term in (1  1)). Since the effective Hamiltonian (17) 
describes a tight-binding model with disorder (and no longer contains Coulomb interactions 
explicitly) we can use the well known results for the persistent current of a non-interacting 
system [16], replacing the number of sites with q and the overlap with the renormalized 
one i ( l8) :  

I = IO exp(-q/<) (26) 

where IO is the amplitude of the persistent current of one particle on an ordered ring with 
q sites and overlap f: 

I @ )  = - (e /h)i4n/q - I <  2 ' P X Z  < '  (27) 

and < is an effective localization length 
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where W is the effective width of distribution of the on-site energy E, for a particular OS la). 
One should note that since the random part depends on the summation of the relevant on-site 
energies E; of the original Hamiltonian (Em = xi, &I) it is no longer uniformly distributed 
between -W/Z and W / 2  as for &i. Nevertheless, as a zero approximation the effective 
width of disvibution may be estimated as W - &W. In order to verify this assumption 
we have performed an exact diagonalization numerical calculation of the persistent current 
following a method presented in 1111 and 1141 for a system of four electrons and 11 sites. 
Using (26). is extracted from the numerical current and compared with the non-interacting 
results of (28) (figure 1). For f = 2.5 a reasonable fit is obtained between the theory and 
the numerical results. 

In conclusion, a perturbative calculation for the persistent current of a stxongly 
interacting ID ring has been presented. The system in the limit of small overlap can 
be represented by M weakly interacting quasi-particles. The current is proportional to 
( t /V )M- ' .  For the disordered case the current decreases proportionally to an effective 
non-interacting localization length. 
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